Formalization of CTL* in Calculus of Inductive Constructions

نویسندگان

  • Ming-Hsien Tsai
  • Bow-Yaw Wang
چکیده

A modular formalization of the branching time temporal logic CTL∗ is presented. Our formalization subsumes prior formalizations of propositional linear temporal logic (PTL) and computation tree logic (CTL). Moreover, the modularity allows to instantiate our formalization for different formal security models. Validity of axioms and soundness of inference rules in axiomatizations of PTL, UB, CTL, and CTL∗ are discussed as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Formalization of the Modal µ-Calculus in the Calculus of Inductive Constructions

We present a Natural Deduction proof system for the propositional modal μ-calculus, and its formalization in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the formalization of modal (sequent-style) rules and of context sensitive grammars. The formalization c...

متن کامل

Formalizing a Lazy Substitution Proof System for µ-calculus in the Calculus of Inductive Constructions

We present a Natural Deduction proof system for the propositional modal μ-calculus, and its formalization in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (sequent-style) rules and of context sensitive grammars. The formalization can be...

متن کامل

A Natural Deduction style proof system for propositional μ-calculus and its formalization in inductive type theories

In this paper, we present a formalization of Kozen’s propositional modal μ-calculus, in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (“proof”) rules and of context sensitive grammars. The encoding can be used in the Coq system, providi...

متن کامل

A Natural Deduction style proof system for propositional $\mu$-calculus and its formalization in inductive type theories

In this paper, we present a formalization of Kozen’s propositional modal μ-calculus, in the Calculus of Inductive Constructions. We address several problematic issues, such as the use of higher-order abstract syntax in inductive sets in presence of recursive constructors, the encoding of modal (“proof”) rules and of context sensitive grammars. The encoding can be used in the Coq system, providi...

متن کامل

Cumulative Inductive Types In Coq

In order to avoid well-know paradoxes associated with self-referential definitions, higher-order dependent type theories stratify the theory using a countably infinite hierarchy of universes (also known as sorts), Type0 : Type1 : · · · . Such type systems are called cumulative if for any type A we have that A : Typei implies A : Typei+1. The Predicative Calculus of Inductive Constructions (pCIC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006